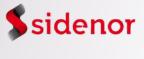


Industrial investigations of fibre optical sensor instrumented thick slab caster mould

Kersten Marx (BFI) based on presentation on 9th ECCC 2017 in Vienna by M. Schäperkötter, P. Müller (SZFG) and B. Feldmeyer and C. Tscheuschner (BFI)


Aknowledgement: The research at Salzgitter Flachstahl GmbH and VDEh-Betriebsforschungsinstitut GmbH leading to these results has received funding from the European Union's Research Fund for Coal and Steel (RFCS) research programme under grant agreement n° [RFCS-CT-2012-00011] **INNOSOLID**

We would like to thank the Research Fund for Coal and Steel for the financial support.

B_Fi

- - Reduce or avoid corner cracks
- Optimize mould geometry
 - Control the beginning solidification
- Materials Processing Institute

RI R

- Extended knowledge on physical
- BFi
- phenomena occurring in the mould

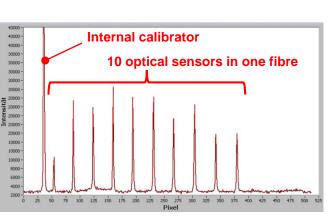
Principle: fibre optical temperature measurement

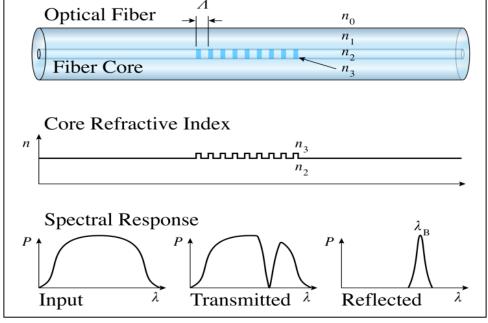
New tools to optimize process control

Fibre Bragg grating as sensing element

SWERI/M

Ssidenor


Reflected wavelength proportional to


- Strain
- <u>Temperature</u>

RIR

Source: Matthias Krüger, Wikipedia Commons

Schematic depiction of a single fibre optical sensor

Example spectrum of user sensor array

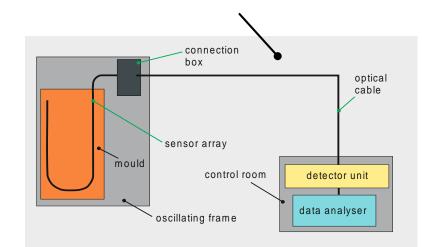
Monitoring the mould temperature by using fibre-optical-sensors

Advantage of Fibre-Optical-Temperature-Sensors (FOTS)

SWERIM

Ssidenor

RIR


Materials Processin Institute

FOTS

- No influences by electro-magnetic fields
- No or less influence of water flow
- Only one access point per mould plate
- Geometrically free positioning up to 20 temperature sensors in one fibre
- Multiple usage also possible

Principle structure and components of the used FOTS-system

Cable bundle 15 thermocouple

FOTS cabling: application with 40 measuring points

*Thermocouple (TC)

Data of continuous SZFG caster No. 4

- CC type: bow type continuous casting machine with large radius (necessary for 350 mm thick slabs/ no bending of the strand shell)
- One strand
- Casting formats:
- slab thickness - slab width - slab length
- 250/350 mm 1.100 – 2.600 mm (cold) 4.2 – 12.4 m

- Max. casting speed: about 1.35 m/min (low carbon 250 mm thick) about 0.65 m/min (steel plate 350 mm thick)
- Compact mould length: 900 mm
- Resonance mould oscillator
- Adjustable width => moving narrow faces

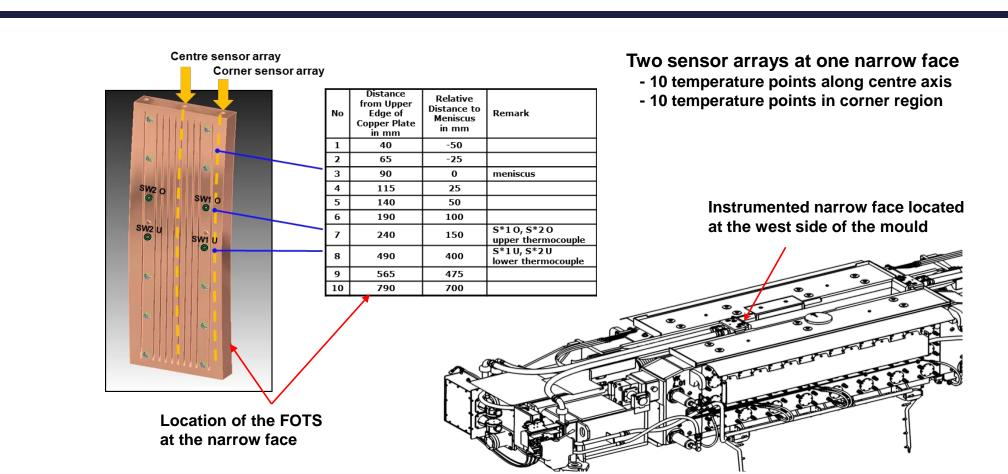
SWERI/M

RI R

Ssidenor

- Materials Processing Institute
 - BFi

Installation at the caster


SWERI/M

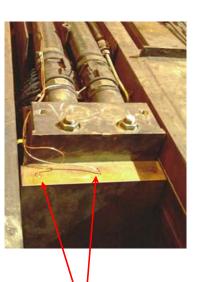
Ssidenor

RI

Materials Processing Institute

Installation at the caster

Multi point FOTS installed at the narrow face of SZFG-caster


SWERI/M

Ssidenor

RIR

Materials Processin Institute

a) Installed narrow face with FOTS-arrays

b) FOTS-connector and flexible optical cable

c) Detector unit and analysis system

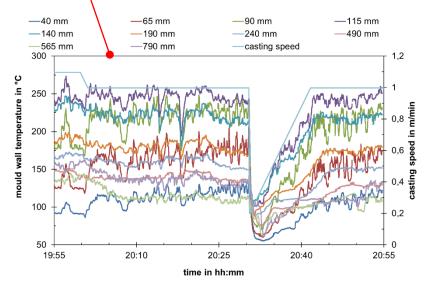
Measurements - using standard narrow face

Mould wall temperatures along corner and centre axis

Measurements - using standard narrow face

Results of Temperature Measurement during sticker alarm

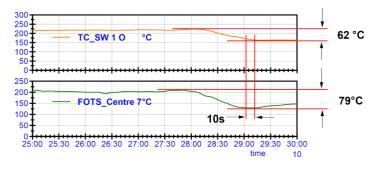
SWERI/M


Ssidenor

RI

Materials Processing Institute

Corner temperature of narrow face during sticker alarm



- Casting speed directly influences the mould wall temperatures
- Temperature maximum at 115 mm decreases 150 K during sticker alarm

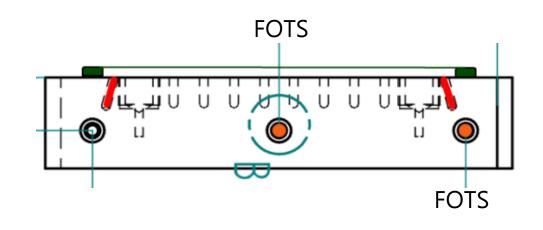
Comparison TC versus FOTS (same distance from top)

FOTS advantage up to:

- 10 seconds additional reaction time
- 17°C increased temperature dynamic

Modification of the narrow face

Preparation of the mould to reduce cooling in the corner area


- Outer cooling channels filled up with resin (temperature stability up to 200°C)
- Sealing (temperature stability up to 250°C)
- RIR

SWERI/M

Ssidenor

- Materials Processin Institute
 - B_Fi

 Two FOTS-arrays on narrow side-west, centre line and corner area on the loose side (continuous operating temperature - up to 250°C)

- ----- modified cooling channels
- Sealing
- FOTS

Measurements - using modified narrow face

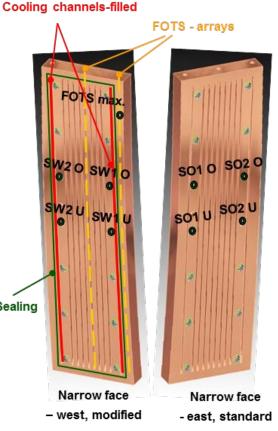
Results of plant trials with modified mould

SWERI/M

Ssidenor

RIR

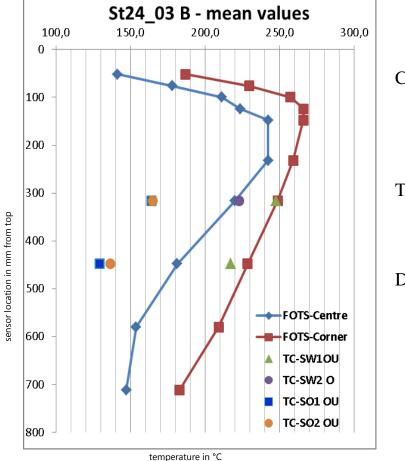




measurement campaign

- Temperatures on west-side (TC: SWxx) (modified) up to 70°C higher than on the east-side (TC: SOxx)
- Difference of about 20°C between loose side (TC: SW1-O) and fix side (TC: SW2-O) of the modified mould
- Temperature of corner (FOTSmax), 25 mm beneath the meniscus, rise up to more than 270°C
- → Cooling of the modified mould plate on the west-side clearly different from the one on the east-side

Detail: start casting - end of casting -


*O - location

Measurements - using modified narrow face

Averaged temperatures along corner and centre axis for 1.82 meters width

- Different behaviour compared to the one in the earlier trials
- Temperatures at the centre now lower than in the corner
- Temperatures at narrow face-west (TC: SWxx) (modified) clearly higher than at narrow face-east (TC: SOxx)
- Similar results for thermocouples and FOTS in similar locations (→ corner)

Casting conditions: Quality: ST24_03B Width: 1820 mm Speed: 0.9 m/min

Temp. max.: 266 °C FOTS-Corner, pos. 4/5 242 °C FOTS-Centre, pos. 5/6

Deviation (FOTS-Corner/Centre): mean = 39.3 °C max. = 55.2 °C, sensor pos. 9 min. = 16.9 °C, sensor pos. 6

SWERI/M

Ssidenor

RIR

Materials

Processin

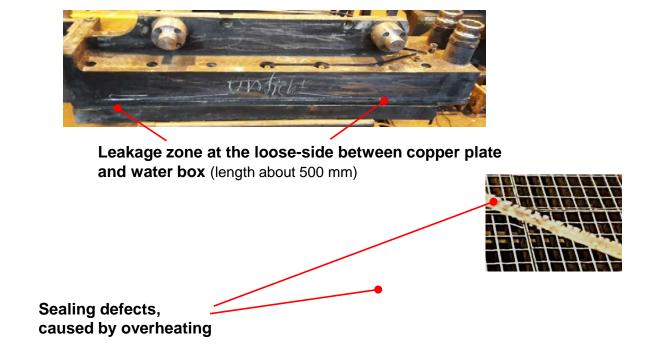
B_Fi

Modified narrow face - Trial results

FOTS defect and water leakage because of high temperature

SWERI/M

Ssidenor


Materials Processing Institute

RSt52_15 Nb - mean values 100,0 150,0 200,0 250,0 0 100 -200 -300 -400 -500 -600 -700 -700 -800 -100

Fibre "FOTS-Corner": defect after 3.5 hours of working, caused by overheating

Water leakage after a 19 hours period of working and 17 heats

• No unusual defects or heat distortion at the copper plate after dismounting

Ssidenor

RI R

Materials ⊀ Processin

B_Fi

Fibre optical sensor system:

- Temperature results of FOTS comparable to thermocouples
- FOTS-System shows a higher resolution in space and time
 - Operators are enabled to monitor the temperature profile and the area around the meniscus
 - Alarm values for undesired casting situations (level changes, sticker e.g.) could be derived
 - Temperature limitations must be taken into account

Conclusion II

ALCRA

Trials and results:

- Two measuring campaigns were successfully performed. One with the initial mould geometry and one with an adjusted mould geometry
- Explicit rise of temperature in corner area with modified mould
 Risk of water leakage increases
- RIR

Ssidenor

B_Fi

Materials ocessing nstitute

Thank you for your attention! Questions?

ALCRA

Contact: kersten.marx@bfi.de

European Commission