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¥ Background

« For further improvement of as-cast product quality, electromagnetic forces,
e.g. due to electromagnetic braking (EMBr) or electromagnetic stirring

S (EMS), are applied in continuous casting moulds.
Bsidenor L AR optimum utilisation of these techniques is limited by the fact that little is
(R known about the influence of the acting forces on the physical processes.
’ .
gome, Direct assessment of the relevant processes, e.g. flow conditions, is very
difficult or even impossible.
Bfl

e Thus, simulation approaches became an important tool to obtain the
necessary information.



¥ Ways and Means

« Advanced numerical simulations concerning flow conditions in the mould
were performed for variation of operational parameters including those of

swEm electromagnetic actuators.
geay Verification of numerical results without electromagnetic forces were
‘ successfully performed via physical modelling.

R|’F|_

= Extensive simulations were carried out for a thin slab and a billet casting
G mould equipped with EMBr or EMS, respectively, basing on operational

Input data.
Bfl

« Results were presented concerning the influence of above mentioned
operational parameters on process stability and product quality.



¥ Physical Modelling

Validation of numerical simulation by physical modelling

* Modular full scale mould models for simulations of
flat and long product casters including tundish with
regulation system (sliding gate or stopper rod) also
gas injection possible

* Colour injection for flow visualisation and flow
symmetry quantification

* Particle Image Velocimetry (PIV) to quantify time-
dependent flow fields

* Ultrasonic sensors to quantify local time-
dependent mould level behaviour
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¥ Numerical Modelling

Computational Fluid Dynamics (CFD) program Ansys/Fluent
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Submerged Entry Nozzle with Grid

Calculated Interface between
Liquid Steel and Mould Flux
as well as Interface Velocity

Mould

* CFD code for 3D, turbulent and time-
dependent flow

* Multiphase flow with several fluid layers and
interfaces (e.g. liquid steel, mould flux, air)

* Dynamic behaviour of dispersed phases (gas
bubbles and/or inclusions)

* Solidification
* Electromagnetic forces

e Simultaneous simulation of these
phenomena



¥ Numerical Modelling

Main equations used
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ot momentum
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2 . .
F = _EBS((D _ ﬁj s2ur? F = EBS((D B ﬁjcr Stirring forces
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7 Results EMBr (Slab caster)

Numerically computed flow field and Lorentz force
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7 Results EMBr (Slab caster)

Influence of EMBr power
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¥ Results EMBr (Slab caster)

Influence of EMBr parameters

Relative EMBr position in mm
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¥ Results EMBr (Slab caster)

Numerically computed entrapment position
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¥ Results EMS (Billet caster)

Measured magnetic field and computed forces and velocities
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¥ Results EMS (Billet caster)

®) SWERIM

‘ sidenor
RI{A

iz

Bfl

N

=
o

=e— ithout EMS
== With EMS

in %

=
= (6)]

Se%aration rate
tn

Entrapment rate in %

N
J1

40

Inclusion diameter in um

—e— without EMS
=w=\ith EMS

N
(@]

[y

ment rate in %
[6)]

=
(@]

Entrap
U1

@]

4

ment rate in %

N
O

Entra

Z posit-ion inm

95

90

85

80

=e— ithout EMS
== With EMS

75

40

Inclusion diameter in um

p

=
(@)

=v= north face
=-4= south face
=p— west face
—¢— east face

— \With EMS
= = = = Without EMS

20

Inclusion diameter in pm

Numerically computed inclusion behaviour with and without EMS

Separation rate higher
without EMS

Entrapment rate similar
with and without EMS

Entrapment rate highest
near mould level

More uniform distribution
of inclusions between the
faces with EMS




¥ Results EMS (Billet caster)
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¥ Results EMS (Billet caster)
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¥ Conclusions EMBr

« Numerical computations can provide important information
on physical processes concerning electromagnetic forces

(%) SWERIM . . . .
applied in continuous casting moulds.
‘sidenor . .
« The influence of process parameters can be studied also
‘ taking into consideration extreme values of these parameters.
R|’F|_

A properly adjusted EMBr (position and power) can decrease
*32*;;?.5::"9 near mould level flow velocities and level fluctuations and increase
the separation rate.




¥ Conclusions EMS

« The comparison of casting with and without EMS for the reference condition
investigated shows that application of EMS is slightly decreasing separation

(%) SWERIM . . e . . .
rate but has no significant influence on inclusion entrapment.
Badenor L An EMS with a high magnetic field can decrease inclusion separation but
increase inclusion entrapment.
RI{A
~+With a strong magnetic field it is possible to obtain a more even
Fi distribution of the inclusions entrapped in near the mould faces.

Bpi  Frequency and position of the EMS can influence inclusion entrapment
significantly.
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¥ Outlook Vi

* It is expected that due to the rapid development of soft- and
hardware numerical simulation will become more important.

®) SWERIM

« The computation of more complex physical phenomena taking
$sicenor  INnto consideration their simultaneous interaction will be possible
more efficiently.
RI\A . L
"« Further work is envisaged concerning MHD effects with simultaneous
solidification and structural dynamics.

« New and more detailed information is expected which will help
BF! to further optimise the continuous casting process.
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Thank you for your attention!

Contact; kersten.marx@bfi.de
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