

Something a bit different: **NNEWFLUX and OPTILOCALHT**

Dr Bridget Stewart (née Harris) Materials Processing Institute Eston Road, Middlesbrough, TS6 6US United Kingdom

SWERIM

B_Fi

Why the need for something different?

- Mould flux selection requires compromise between the conflicting property requirements for the various functions these materials perform.
- What if selection could be simplified by introducing another layer of choice for steel manufacturers?
- This was my aim in setting up the NNEWFLUX and OPTILOCALHT projects.
 - NNEWFLUX is concerned with viscosity of the liquid flux.
- OPTILOCALHT is concerned with varying the rate of heat transfer in the mouldstrand gap.

SWERI/M

Ssidenor

RIR

NNEWFLUX:

Non-Newtonian mould fluxes - a smart viscosity response to enhancing production flexibility of steel grades prone to entrapment

Coordinator: Bridget Stewart

Co-Authors: Maïté Cornille, Pavel Ramierez Lopez, Hyunjin Yang, Diana Mier Vasallo, Klaus Schulz, Adam Hunt, Maria Ferrer Prieto

Duration: 1 July 2016 – 31 December 2020

SWERI/M

Problem addressed by NNEWFLUX

Slag entrapment in the mould

Approach

Organisation of Work Packages

Grades selected

SWERI//

Ssidenor

- Statistical evaluation of the influence of slag entrapment on the billet quality at Sidenor and slab quality at ArcelorMittal over the past 5 years
- Shown that several steel families and grades that seem prone to entrapments.
- Identified "challenging" and "easy to cast" grades, validated by economic assessment.

ArcelorMittal	Challenging	Easy to Cast	Total			
% Production in 2017	11.5	3.7	240 000t	Potential savings of 150k€ per annum for Arcelo		
Powder slivers	4.09%	0%	3.72%			
Cracks	4.78%	1.51%	4.61%	'Challenging'		
Steel Grade	Cost of reje	ction associated	Cost of rework associated with entrapment type cracks (€/month)			
Ssidenor	cracks	(€/month)				
Sidenor 'Challenging'	Ę	5000	1700			
Sidenor 'Easy to Cast'	1	1000	200			

Modelling

- Aim to identify target properties for non-Newtonian flux for the grades studied in this project through understanding of lubrication mechanisms.
- Advanced numerical modelling by Swerim MEFOS for explicit slag infiltration predictions.
- Looked at why more entrapment occurs in the 'challenging' cases.

Ssidenor

RI R

Materials Processing

Institute

Bri

Modelling for ArcelorMittal Caster

 For ArcelorMittal cases, entrapment is not caused by high interfacial velocity.

SWERI/M

Ssidenor

RI R

Materials

Processin

Bri

- No slag entrapment was predicted from the numerical simulations of fluid flow.
- It is suspected that the entrapment mechanisms are related to heat transfer and solidification, such as entrapment by hook formation.

Critical velocity for entrapment = 0.298 m/s

Modelling for Sidenor Billet Caster

Streamlines of liquid steel and magnetic field density

BFI

- For Sidenor cases, slag entrapment is predicted in both cases due to the slightly higher interface velocity than the critical velocities
- High oxygen activity might be one explanation of more inclusions in the 'challenging' case. (Interfacial tension can drop from ~1.3 to ~0.5N/m.)

9

Viscosities of non-Newtonian fluxes

New characterisation method needed

Bri

VIS 403

Shear thinning of fluxes up to 40 s⁻¹

	n
MPI	0.8207
MPI-NNEW	0.8094
Sidenor B	0.8939
Sidenor B-NNEW	0.8158
Powder 8	0.7697
Powder 8-NNEW	0.5847

- Shear thinning behaviour expressed by the power law: $\tau = K \cdot \gamma^n$
- n is flow behaviour index
- n < 1 is shear thinning
- Strongest shear-thinning effect observed in Powder 8

Viscosities of non-Newtonian fluxes

Both temperature and shear rate needed for modelling

Processing

Bŗi

Pilot trials

		NNEW1	NNEW3		
	Date	28/06/2018	13/02/2020		
	Grade	MAMA#1	MAMA#1		
SW/FDI M	Powder	#8	#8 + 2-3% Si3N4		
JULIN	Dimension 100x450 100x Casting speed 0,9m/min 0,9m Ar injection flow-rate 0,13NL/min 0,2N Immersion depth from top of the port 130mm then reduction every 5min of 5mm 130m	100x450			
	Casting speed	0,9m/min	0,9m/min		
Ar injectio rate Immersion from top of	Ar injection flow- rate	0,13NL/min	0,2NL/min		
	Immersion depth from top of the port	130mm then reduction every 5min of 5mm	130mm then reduction every 5min of 5mm		
	Mold level position from TOC	80mm	80mm		
RIA	Taper	0.9%/m per face	0.9%/m per face		
	Frequency	203cpm	203cpm		
	Stoke	6mm	6mm		
	Water flow BF	1560L/min	1560L/min		
(Water flow BF	180L/min	180L/min		

Trial parameters

Friction similar with NN flux

Heat extraction slightly higher with NN flux

.

Ss

Processing

BFI

Pilot trials

Pictures & Handyscan after sand blasting

		NNEW1	NNEW3
	Date	28/06/2018	13/02/2020
	Grade	MAMA#1	MAMA#1
WFRIM	Powder	#8	#8 + 2-3% Si3N
/// mrx1///	Dimension	100x450	100x450
NNEW1 Date 28/06/2018 Grade MAMA#1 Powder #8 Dimension 100x450 1 Casting speed 0,9m/min 0 Ar injection flow- rate 0,13NL/min 0 Immersion depth from top of the port 130mm then reduction every 5min of 5mm 1 Mold level position from TOC 80mm 8 Taper 0.9%/m per face 0 Frequency 203cpm 2 Stoke 6mm 6 Water flow BF 1560L/min 1	0,9m/min		
	Ar injection flow- rate	0,13NL/min	0,2NL/min
idenor	Immersion depth from top of the port	130mm then reduction every 5min of 5mm	130mm then reduction every 5min of 5mm
	Mold level position from TOC	80mm	80mm
ם ונ	Taper	0.9%/m per face	0.9%/m per face
ст) п.	Frequency	203cpm	203cpm
	Stoke	6mm	6mm
	Water flow BF	1560L/min	1560L/min
10000000	Water flow BF	180L/min	180L/min
Materials			

Trial parameters

Industrial trials - Sidenor

Four trials with challenging microalloyed grades

	Trial NO	Dete	Uset	Steel	Cine mar	Mould	Main defect	Rejection,	Rework,	Main defect
SWERI//	I riai Nº	Data	Heat	grade	Size, mm	Powder	as-cast material	%	%	rolled material
		Jun-20	211066	A	240	В —		13.70%	11%	MP entrampment
	1					5 billets				
Ssidenor		1 20 244055			NN -		00/	00/		
		Jun-20	211066	A	240	1 billet		0%	0%	
						NN -	Crack into OM			Pore or
4		Jun-20	211095	В	B 240	3 billets	Blows into OM	5.00%	47.50%	pinhole
RIA 2 Materials Processing Institute	2						Pinholes			
		Jun-20 211095 B	211005		240	В —	Longitudinal crack	11 500/	25.00%	Rolling
			240	2 billets	Pinholes	11.50%	25.00%	defect		
	3	Jul-20	211308	С	185	В		2.20%	12%	
		Jul-20	211309	С	185	NN		0%	0%	
				4.05			7 400/	4.60/	Rolling	
	4	Jul-20	211386	В	185	NN	BIOWS INTO UM	7.40%	16%	defect
BCI		Jul-20	211387	В	185	В	Longitudinal crack	2.1	15	

Next Steps

- Define operating windows to achieve best product quality with new fluxes
- Parametric studies ongoing
- Results will form basis of Casting Simulation Interface (CSI) for operators who might use the new powders
- Final report

RIR

SWERI/

Ssidenor

OPTILOCALHT:

Optimisation of Local Heat Transfer in the CC Mould for Casting Challenging and Innovative Steel Grades

Coordinator: Bridget Stewart

Co-Authors: Pavel Ramierez Lopez, Hyunjin Yang, Pooria Nazem Jalali, Peter Andersson, Sailesh Kesavan, Diana Mier Vasallo, Maria Ferrer Prieto, Maïté Cornille, Ben Yao, Adam Hunt, Chris Oswin, Alan Taylor, Rongshan Qin, Ashutosh Bhagurkar, Zushu Li, Rahul Sarkar, Karin Hansson-Antonsson, Frederik A Axelsson, Paavo Hooli & Johan Pejnefors

Duration: 1 July 2019 - 30 June 2023

SWERI/M

Materials Processing Institute

SANDVIK

PROXIMION

Hoopa Metallurgy

Definition of the problem

Creating more flexibility for steel producers

What reduces heat transfer in slag films?

Slag film from British Steel Teesside

State of the Art

1mm

Hunt, PhD Thesis 2017

Possible Methods for Localising Heat Transfer Control

Mould flux

SWERI/M

Ssidenor

Porosity and scattering effects

Stewart, Scholes & Hunt, Patent 2016

RI

BFI

Slag electrification & electropulsing Mills & Riaz, Unpublished results, 2001 Qin, 1998

Mie scattering

State of the Art

Design and Evaluation

Ssidenor

150

New methods to visualise and interrogate the data

Modelling to predict optimal local heat transfer control

WP1 Slag film extraction methods

WP2 Slag film characterisation

Use of novel techniques e.g. for surface roughness and porosity

WP3 Modelling

To predict values of q_{hor} and slag infiltration for reference cases

WP 6 Pilot trials

SWERI//

Ssidenor

Materials Processing

Facilities:

7T AC Electric Arc Furnace

Combined vacuum degassing and ladle furnace

Billets and mini-slab

Up to 20m cast length

Partners can participate in MPI pilot trials, and access live data by combining remote access through wearable technology (Smart Glasses) with Digital Twin of the caster.

Next steps

- Publications on electrical methods in press (Open University)
- Install dense temperature measurement sensors in industrial moulds (Proximion, Sidenor, Sandvik)
- Revise plan as Covid-19 response evolves.

SWERI/

Ssidenor

Acknowledgements

Thank you to everyone involved!

SWERI//

Ssidenor

RI

Bŗi

