

The fundamentals of the crack formation: chemistry and physics

Gonzalo Alvarez de Toledo, Nora Egido Pérez Sidenor I+D 48970 Basauri. Bizkaia

SPAIN

SWERI/M

Ssidenor

RI A

B_Fi

Introduction

History of continuous casting at Sidenor

SWERIM	YEAR	CASTING	CASTING	STEEL	OBSERVATIONS
		SIZES (mm)	SPEED	GRADES	
Ssidenor	< 1985	125			Much knowledge developed
		145		More difficult	New technologies: EMS, mould and
	1985 – 2000	145		to cast	oscillation, secondary cooling
RIR		170	Continuous	Microalloyed steel	Advances on online control
	2000 - 2018	155	increase	grades: Al, N, V, B,	However:
Materials Processing		185		Nb	The productivity requirements,
	>2018	155		Microalloyed + S.	More difficult to cast steel grades
		185			Higher quality requirements.
BFI		240	•		CRACKING REMAINS A BIG PROBLEM
-	BLOOM > 2012	350x470			

Introduction

Internal defects:

- 1. Off-corner cracks
- 2. Corner cracks
- SWERI/M

RIR

Materials Processing

B_Fi

- 3. Half-Way Crack
 - 4. Transversal cracks
 - 5. Star-Crack
- **Ssidenor** 6. Central pipe
 - 7. Pore, blown holes
 - 8. Powder entrapment

Surface defects:

- 9. Corner cracks
- 10. Longitudinal cracks
- 11. Thermal/transformation longitudinal cracks
- 12. Corner transversal cracks
- 13. Face transversal cracks
- 14. Intergranular cracks (corner)
- 15. Intergranular cracks (face)
- 16. Surface star cracks Start cracks
- 17. Pores, blow holes
- 18. Powder entrapment

Introduction

Bellet, Michel, et al. Metallurgical and Materials Transactions A 40.11 (2009): 2705-2717. [Hunt, B. Stewart, 9th ECCC, European Continuous Casting Conference, 2017, p. 620

5/03/2020

Worshop on microalloyed steels and cracks in continuously cast billets

www.valcra.eu

AGENDA

9:15 -9:30 h Introduction. Classification of cracks in continuously cast billets. Objectives of the European dissemination Project VALCRA.

9:30 -10:45 h Internal segregation cracks (Ghost lines)

- Formation mechanism. Influence of S, Mn and Boron.
- Influence of casting parameters.

10.45 - 11.00 h Coffee break

11:00 – 12:15 h Surface cracks in billets

- Influence of microalloyed elements on hot ductility: Ti, Al, B, Nb, V, N.
- Influence of casting conditions

12:15 - 12.45 h Thermal/transformation cracking in the tertiary cooling.

12:45 - 13.00 h Final conclusions

Sidenor

1. Introduction

Chemical composition

SWERIM

Ssidenor

High temperature ductility troughs during solidification and cooling of the CC billet.

RIR

B_Fi

LDZ I: Internal segregation cracking.
LDZ II and LDZIII: Surface Cracks and Thermal/transformation cracks

2. Internal segregation cracks

SWERI/M

Ssidenor

RIR

Materials

B_Fi

- **1. Segregation cracking formation mechanism**
- 2. Influence of composition on segregation cracking: Sulfur, Boron
- 3. Classification of cracks: Half-way cracking, Off-corner cracking, Near corner cracking.

2. Internal segregation cracks

18NiCrMo5E 185 mm billet. Hot acid eching. Crystal columnar growth area. Distance to billet surface: 60 mm.

Ssidenor

Strain to produce cracking: >0.5%

Composition susceptible to segregation cracking: low melting interdendritic liquid.

Chemical elements: C, S, B, Nb. Mn/S < (Mn/S)c $(Mn/S)c = 1,345 \cdot S^{(-0,7934)}$

2. Internal segregation cracks

RIR

Materials Processing

B_Fi

Half-way cracks Secondary cooling

Off-corner cracks Mould lower part or exit of the mold

Near corner cracks Foot rolls or Zone 2. Two nozzles by billet face.

3. Surface cracks on billets: intergranular and transversal cracking

SWERI/M

Ssidenor

RIR

Materials

- 1. Introduction: stresses at the surface of the CCM
- 2. Influence of the γ/α transformation and of the Austenitic Grain Size on cracking
- 3. Influence of the microalloying elements on hot ductility.
 - 4. Methods to avoid intergranular cracking: On-line double γ/α transformation and secondary cooling influence.

Sidenor

3. Surface cracks on billets: intergranular and transversal cracking

SWERIM

Ssidenor

Billet corner of sample S3B4, 19MnNbV5C steel grade. Hot acid etching

2. Surface cracks on billets: intergranular and transversal cracking

Sidenor

3. Influence of the microalloying elements on hot ductility.

Influence of the AIN

SWERI/M

B_Fi

- Ductility curves of a C-Mn steel with a 0.050% of aluminum in composition and different N contents.
- As the product Al*N increases, the ductility trough widens, this being related to AIN precipitating at higher temperatures.

Relationship between crack index and the N*Al product.

4. Transformation Stress Cracks at the tertiary cooling

Transformation influence: Volume changes

SWERIM

- Ssidenor
- RIR

B_Fi

stamping, the volume expansion related with the γ/α transformation changes the shrinkage pattern.
Nevertheless, even for a 30

26 minutes after the

 Nevertheless, even for a so minutes time, untransformed inner billet continues to shrinks due to decreasing temperatures.

Casting time for

Transformation Stress Cracks at the tertiary cooling

Example: 16MnCr5E

B_Fi

Materials Processing Institute Contact: gonzalo.alvarezdetoledo@sidenor.com nora.egido@sidenor.com

