

Process optimization strategies for crack reduction

Edoardo D'Amanzo – Rina Consulting Michele De Santis - Rina Consulting Riccardo Tonelli – Rina Consulting edoardo.damanzo@curtisoftware.com
 michele.desantis_csm@rina.org
 riccardo.tonelli@rina.org

Bri

What means Process Optimization?

SWERI/M

Ssidenor

RI R.

Materials

BFI

"definition of strategies such as tailoring operating practices and actions aimed to reduce the occurrence of defects in the final product, without detrimental impacts on productivity and safety conditions"

Process parameters

Many parameters can influence the occurrence of defects in CC.

Process parameters

Many parameters can influence the occurrence of defects in CC.

EU research

RFCS projects contribute to evaluate a wide range of interesting solutions.

SWERI/M

Ssidenor

RIR

Materials

Bri

VALCRA proposes a **deep analysis of RFCS projects**. It emerged **4 main sub-topics** concerning **process optimization** in CC (see <u>D2.3</u> on VALCRA website):

Layout design	Modification to the caster define to reduce cracks formation	
Operating conditions	Definition of operating windows to reduce cracks occurrence. Definition of rules for downgrading due to potential crack generation	First milestone of VALCRA project is the publishing
Improved steel compositions	Optimization of steel chemical composition for improving castability and to reduce defect occurrence	The main results of process
Injection techniques	Identification of specific techniques for inoculant addition to liquid steel to modify solidification	highlighted.

RFCS concerning process optimization

	Title	Acronym	Relevant sub-topics
	Castability & surface quality of steels microalloyed with Ti or TiNb in continuous casting of slabs, thin slabs and beam blanks	_	Improved steel compositions
SWERI/M	Improvement, control & prediction of cast & rolled products through development & application of novel engineering monitoring techniques.	CASTDESMON	Operating conditions
	Enhanced as-cast product quality by optimised mould taper design.	SOLIMOULD	Layout design
sidenor	Optimising slag film properties and determination of operational windows for lubrication, mould heat transfer and shell formation.	SLAGFILMOWL	Operating conditions
	Precipitation behaviour of microalloyed steels during solidification and cooling.	PRECIPITATION	Operating conditions/Improved steel compositions
	Grain size control in steel by means of dispersed non metallic inclusions	GRAINCONT	Injection techniques
	Integrated models for defect free casting.	DEFFREE	Operating conditions
	Intercolumnar cracking and its relationship to chemistry and applied strain.	ICCRACK	Operating conditions
🔹 Materials	Development of a toolbox for direct defect prediction and reduction through the characterisation of the meniscus slag bed behaviour and initial shell solidification in CC.	DIRECT DEFECT TOOLBOX- DDT	Layout design
Processing Institute	Influence of composition and continuous casting parameters on the precipitation of microalloyed particles of B microalloyed steel grades and Mn alloyed steel grades.	РМАР	Operating conditions
	Investigation of innovative methods for solidification control of liquid steel in the mould.	INNOSOLID	Layout design
BFI	Development of an integrative plant, process and quality supervisory system at CC by the intelligent combination of sensors, data analysis and decision support techniques.	SUPSYSCC	Operating conditions
	Control of the dendritic structure of the initial frozen shell in continuous casting	-	Layout design
	Determination of high temperature surface crack formation criteria in continuous casting and thin slab casting	-	Operating conditions

S

Ssi

R

ALCRA

Some examples

	Title	Acronym	Relevant sub-topics
		_	
Improvement, con		CASTDESMON	
Enhanced	l as-cast product quality by optimised mould taper design.	SOLIMOULD	Layout design
		SLAGFILMOWL	
		PRECIPITATION	Operating conditions/
	Grain size control in steel by means of dispersed non metallic inclusions	GRAINCONT	Injection techniques
Development of a to	Grain size control in steel by means of dispersed non-metallic inclusions Variation of mould geometry to prev solidifying shell	ent detach	Injection techniques ment of
Development of a to Influence of composition an	Grain size control in steel by means of dispersed non metallic inclusions Variation of mould geometry to prev solidifying shell and continuous casting parameters on the precipitation of microalloyed particles of B microalloyed steel grades and Mn alloyed steel grades	GRAINCONT ent detach	Injection techniques
Development of a to Influence of composition at Investic	Grain size control in steel by means of dispersed non metallic inclusions Variation of mould geometry to prev solidifying shell and continuous casting parameters on the precipitation of microalloyed particles of B microalloyed steel grades and Mn alloyed steel grades. ation of innovative methods for solidification control of liquid steel in the mould.	GRAINCONT ent detach PMAP INNOSOLID	Injection techniques ment of Operating conditions Layout design
Development of a to Influence of composition a Investig	Grain size control in steel by means of dispersed non metallic inclusions Variation of mould geometry to prev solidifying shell and continuous casting parameters on the precipitation of microalloyed particles of B microalloyed steel grades and Mn alloyed steel grades. ation of innovative methods for solidification control of liquid steel in the mould. rative plant, process and quality supervisory system at CC by the intelligent combination of sensors, data analysis and decision support techniques.	GRAINCONT ent detach PMAP INNOSOLID SUPSYSCC	Injection techniques

Determination of high temperature surface crack formation criteria in continuous casting and thin slab casting

Operating conditions

CDA

Some examples

	Ti	tle	Acronym	Relevant sub-topics	
	Castability & surface quality of steels microalloyed with Ti or TiNb in continuous casting of slabs, thin slabs and beam blanks		-	Improved steel compositions	
SWERIM	Improvement, control & prediction of cast & rolled production of cast & rolled production monitoring	Evaluation of Nb and	non		
	Enhanced as-cast product quality	precipitation in microallove	d steels		
sidenor	Optimising slag film properties and determination of operation of operation form	ation	SLAGFILMOWL		
	Precipitation behaviour of microalloyed steels during solidification and cooling.		PRECIPITATION	Operating conditions/Improved steel compositions	
			GRAINCONT	Injection techniques	
RI A.			DEFFREE		
,			ICCRACK		
Materials Processing	Development of a toolbox for direct defect prediction and bed behaviour and initia	reduction through the characterisation of the meniscus slag shell solidification in CC.	DIRECT DEFECT TOOLBOX- DDT	Layout design	
Institute			PMAP		
			INNOSOLID	Layout design	
BFI	Development of an integrative plant, process and quality sensors, data analysis and c	supervisory system at CC by the intelligent combination of ecision support techniques.	SUPSYSCC	Operating conditions	
			-		
			-		

Some examples

		Title	Acronym	Relevant sub-topics
	Castability & surface quality o		-	Improved steel compositions
SWERI/M	Improvement, control & predic		CASTDESMON	Operating conditions
	Enhai		SOLIMOULD	Layout design
sidenor	Optimising slag film properties		SLAGFILMOWL	Operating conditions
	Precipitatio	n behaviour of microalloyed steels during solidification and cooling.	PRECIPITATION	Operating conditions/Improved steel compositions
	Grain size contro	ol in steel by means of dispersed non metallic inclusions	GRAINCONT	Injection techniques
RI R		Integrated models for defect free casting	DEFFREE	Operating conditions
Materials Processing Institute	Interc Development of a toolbox f Influence of compositio	Ti-Ce and Ti-Zr in Fe- ZrN precipitates and acts as nucleation refinement	•Cr 20%. → site for ferrite t	with grain size
		microalloyed steel grades and Mn alloyed steel grades.	1 1 1 1 7 11	operating contactoris
- D - 1	Investigation of		INNOSOLID	Layout design
REI	Development of an integrativ		SUPSYSCC	Operating conditions
	Control of t		-	
	Determination of high tem	perature surface crack formation criteria in continuous casting and thin slab casting	-	Operating conditions

Follows some detailed description of how optimization was performed in some RFCS projects

Ssidenor

SWERIM

The projects reported in the following slides are selected just to cover different topics concerning process optimization.

RI R.

BFI

Moreover, they do not report all the arguments developed in the entire project.

PROCESS OPTIMIZATION

RFCS project : PRECIPITATION 1/2

Steelgrade: V-steel, peritectic, slab

Surface Transverse cracks due to:

- V(C,N) precipitates
- Globular Cr
- AIN along austenitic grains

V has the advantage of greater solubility in the austenite.

But V offers no effective resistance to austenite recrystallisation during hot rolling due to larger solubility of V(C,N).

RIR

SWERI/M

Ssidenor

Bri

Substitution of V with Nb. The Nb(CN) precipitates much earlier in Nb steel than V(CN) in V steel. Consequently Nb impairs the austenite grain growth and this results in a smaller ferrite grain sizes and improved

mechanical properties.

Reduction of more than 50% transverse cracking

PROCESS OPTIMIZATION

RFCS project : PRECIPITATION 2/2

Microalloyed Steelgrade: 37MnV5, billet

SWERIM

1st attempt

Substitution of V with Nb

Ssidenor

RI R

- Institute
- BFI

- New secondary water-cooling curves were generated; the same total amount of water is distributed with less water in the first zone. This results in more uniform cooling.
- **More vacuum time** is allocated during secondary metallurgy to improve castability.
- A new mould powder was introduced to minimize billet/mould friction and better initial solidification

Detrimental mechanical properties

SWERI/M

Ssidenor

RIR

Materials Processir

BFI

RFCS project : PMAP

Steelgrade: 30MnCrB5E with B addition, billets

What we learnt:

- B enriches in the interdendritic liquid producing a low melting interdendritic liquid which enhances cracking, like the effect of sulphur for a low Mn/S ratio steel grade.
 - B impairs pro-eutectoid ferrite precipitation at the austenite grain boundaries, and by this way increases the internal strains related to perlite transformation

For avoiding internal billet cracking in B steel grades the casting parameters which could produce strains in the solidifying shell have to be optimized.

RFCS project : PMAP, SIDENOR VALCRA STUDIES

Steel grades with (Mn/S) < (Mn/S)_{critic} or B steel grades

SWERIM	Cracking name	Mechanism producing cracking	Casting which should be optimized
G		High billet/mould friction	Mould taper, mould wear
	Off corner crecking	Billet surface reheating inside the mould	Mould taper
Ssidenor	Off-corner cracking	Rulaing at mould avit	Zone 1 water cooling intensity
		buiging at mould exit	Foot rolls adjustment
			Adjust of water cooling
Materials Processing Institute	Off-corner reheating cracking	Billet surface reheating in the Zone 1-2 transition Nozzle clogging on secondary cooling zone	Decrease distance between zones 1-2
			Increase casting speed
		Dillet ush setime hat uses a second of secondary	Correct design of secondary cooling
Вгі	Half-way cracking	cooling	Decrease distance between cooling zones, when it is not possible to increase casting speed
	Mid-face transformations stress cracks	Stresses due to high billet cooling rate or a composition promoting fast Austenite/perlite transformation.	Slow billet cooling at cooling bed Avoid air draught at tertiary cooling

RFCS project : SLAGFILMOWL

Steelgrade: duplex stainless steel

SWERI/M

Ssidenor

RI R

B_Fi

Deep longitudinal cracks (on the loose side in the SEN region)

Steelgrade: duplex stainless steel

- In SEN region, the melt flow is very stagnant.
- This is mainly caused by low depth of molten slag in that area.
- Retarded shell formation on wide face leads to crack formation.
- New thermocouples on the mould faces and use of new solidification mathematical model, new solutions have been proposed and tested

RFCS project : SLAGFILMOWL

Steelgrade: duplex stainless steel

Ssidenor

Materials

BFI

Processing

- In SEN region, the melt flow is very stagnant.
- This is mainly caused by low depth of molten slag in that area.
- Retarded shell formation on wide face leads to crack formation.
- New thermocouples on the mould faces and use of new solidification mathematical model, new solution have been proposed and tested

Significant improvements were achieved by means:

- Application of new powder (reduced Na₂O and increase fluorine)
- Low heat flux for "soft cooling" that evens the shell formation reducing tensions in the shell
- Increase the superheat to give higher heat input in the SEN region

Improvements have been recorded also in terms of oscillation marks depth

SUPSYSS

The project concerns the implementation of new rules for the downgrading of the final products and monitoring of production.

Detected defects:

- <u>Marks</u> in the slab surface
- <u>Slivers</u> due to mould powder, alumina or other non-metallic inclusions
- Blisters

Sensor systems related to:

- mould plate monitoring
- caster drive monitoring
- inspection of slab surface quality by conoscopic holography

Ssidenor	•

RIR

SWERI/M

R-i	

N°	EVENT	VARIABLE CONTROL	DEFECT
1	Al drop SM - tundish	Med(Al tot, Alsol) - AltotTD	A12O3
2	Al drop during casting	Al tot(n-1) - Al tot(n)	A12O3
3	No shroud LD-TD	PLC	A12O3
4	Argon flow LD-TD	Argon flow	A12O3
5	Ladle open with O2	PLC	A12O3
6	High mould level variation	Level sensor	Inclusions / cracks
7	Very high mould level variation	Level sensor	Inclusions / cracks
8	Level control not automatic	PLC	Inclusions / cracks
9	Cleaning	PLC	Inclusions / cracks
10	Break out alarm	SAPSOL	Sticking

Example of events gathered in the continuous caster quality model (SUPSYSS, table 23)

Benefits

- <u>No break-out and no defect crisis</u> due to oscillation failures since alarm is active.
- <u>On-line checking</u> of the machine status, which is a very good complement to the periodic checking during the maintenance stops.

Conclusions

RIR

BFI

- SWERIM
- The optimization of continuous casting process involves many variables: there is no a general recipe to optimize the production process

- Many RFCS projects concern the study of microalloyed steels. Innovative countermeasures thanks to identification of new crack formation mechanisms have been detected.
- It is well known that solidification and cooling control (primary, secondary and tertiary) are fundamental to achieve proper product quality. In that frame, new solutions have been proposed, achieving optimal results in a more sustainable and economical way

As reported in D2.3, most of technical solutions developed during various RFCS projects, have achieved a TRL 6/7 starting from a TRL 2/3. It means that EU funded research is an important tool to improve industrial production quality

Future developments

SWERI/

Ssidenor

RIR

Materials Processip-Institut

BFI

Nevertheless the important results achieved in the last 25 years of EU research, **future developments** are always required:

Improved caster design has been a subject of the present topic. Despite the high potential of the technology, few solutions have been explored. Other innovative layouts found issues related to their spread, probably since the high cost of investment.

- Modelling and reliable monitoring systems are fundamental to detect the optimum combination of variables. New tools lead to new optimization strategies
- RFCS projects lacks sometimes of a relevant study concerning environmental problems. In the frame of EU climate targets 2030-2050, it shall be appropriate to deeper these aspects

B_Fi

Materials Processing Institute

in

ALCRA

Stay informed

http://valcra.eu/

https://www.linkedin.com/company/europeancontinuous-casting-network

VALCRA linkedin group (linkedin.com/groups/13794289/)

